
Proceedings on Privacy Enhancing Technologies ; 2016 (4):356–372

Armon Barton* and Matthew Wright

DeNASA: Destination-Naive AS-Awareness in
Anonymous Communications
Abstract: Prior approaches to AS-aware path selection

in Tor do not consider node bandwidth or the other

characteristics that Tor uses to ensure load balancing

and quality of service. Further, since the AS path from

the client’s exit to her destination can only be inferred

once the destination is known, the prior approaches may

have problems constructing circuits in advance, which is

important for Tor performance. In this paper, we pro-

pose and evaluate DeNASA, a new approach to AS-

aware path selection that is destination-naive, in that it

does not need to know the client’s destination to pick

paths, and that takes advantage of Tor’s circuit selec-

tion algorithm. To this end, we first identify the most

probable ASes to be traversed by Tor streams. We call

this set of ASes the Suspect AS list and find that it con-

sists of eight highest ranking Tier 1 ASes. Then, we test

the accuracy of Qiu and Gao AS-level path inference on

identifying the presence of these ASes in the path, and

we show that inference accuracy is 90%. We develop an

AS-aware algorithm called DeNASA that uses Qiu and

Gao inference to avoid Suspect ASes. DeNASA reduces

Tor stream vulnerability by 74%. We also show that

DeNASA has performance similar to Tor. Due to the

destination-naive property, time to first byte (TTFB) is

close to Tor’s, and due to leveraging Tor’s bandwidth-

weighted relay selection, time to last byte (TTLB) is

also similar to Tor’s.

Keywords: Anonymity, Tor

DOI 10.1515/popets-2016-0044

Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

1 Introduction

Tor is a popular anonymous communication system that

allows Internet users to access the web anonymously

*Corresponding Author: Armon Barton: UT Arlington,

E-mail: armon.barton@mavs.uta.edu

Matthew Wright: UT Arlington, E-mail: mwright@uta.edu

or circumvent censorship [10]. Past research has shown

that end-to-end timing attacks [30] and traffic corre-

lation attacks [24, 29] may be used to deanonymize

Tor users by eavesdropping adversaries who simultane-

ously observe both traffic from a client to the Tor net-

work and traffic from the Tor network to the client’s

requested destination. Thus, any autonomous systems

(ASes) that are traversed on both of those sections of

the path from the client to her destination would make

ideal candidates for adversarial eavesdropping vantage

points [11, 12, 19]. Adversaries that observe traffic from

those vantage points are termed AS-level adversaries.

To evaluate the risks posed by AS-level adversaries,

it is necessary to determine the set of ASes that appear

on both of those sections of the path. One method is

to infer the AS-level path, using Qiu and Gao AS-level

path inference [27]. Another method is to infer the AS-

level path using traceroute measurements [23]. Recently,

Juen et al. found that Qiu and Gao AS-level path in-

ference significantly overestimates the number of ASes

traversed by Tor traffic; thus, this method directly is not

suitable for predicting or mitigating the risk of AS-level

adversaries to Tor [21].

All previously proposed AS-aware path selection

methods [11, 20, 28] share a key disadvantage: the signif-

icant performance benefit from pre-constructing circuits

is diminished due to needing to check the circuits for

adversarial eavesdropping vantage points once the des-

tination is known and possibly construct new circuits if

no safe ones are available. Starov et al. show an increase

in page load time by 41% in their AS-aware Tor client,

Astoria [28]. They suggest that the performance loss in

page load times are due to: 1) the inability to preemp-

tively construct circuits to the same degree as Vanilla

Tor, and 2) the time cost of computing AS-level paths

and checking those paths for adversarial vantage points.

1.1 Contributions

In this paper, we first show empirical results suggesting

that Qiu and Gao AS-level path inference, though un-

reliable for full paths, is sufficiently reliable in detecting

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 357

high-ranking ASes [5]. We then propose a novel method

for AS-awareness in Tor that leverages the reliable in-

formation from Qiu and Gao’s approach and evaluate

its anonymity and network performance.

In particular, we first identify the most probable ad-

versarial eavesdropping vantage points, denoted as Sus-

pect ASes, to be traversed by Tor streams. Then, we test

the Qiu and Gao AS-level path inference method for

its ability to infer the presence of each individual Sus-

pect AS in the path and show that the mean accuracy

is 90%. Based on this finding, we developed DeNASA,

a novel AS-aware path selection algorithm that does

not need to know the client’s destination in advance

and thereby can take advantage of the performance op-

timization achieved by having pre-constructed circuits

that are fully ready to be used. We term this property as

being destination-naive. We designed a TorPS [31] sim-

ulation in which 34.4% of Tor streams were vulnerable.

This is slightly higher than what most previous works

suggest [11, 12, 19, 20]. We show in the simulation that

DeNASA reduces Tor stream vulnerability by 74%.

We also implement this AS-aware path selection al-

gorithm in the Tor source code and test its network per-

formance in Shadow. We show that TTFB is not signifi-

cantly different than Vanilla Tor due to the destination-

naive property. Using the same simulation we show that

TTLB is not significantly different than Vanilla Tor.

2 Background

2.1 Tor

Tor is a circuit-based low-latency anonymous commu-

nication system designed to anonymize TCP-based ap-

plications [10]. Tor consists of approximately 7000 re-

lays [15] distributed throughout the world making up

an overlay network across the Internet. Each Tor relay

is deployed voluntarily by people around the world who

wish to support anonymous communications and can

supply the bandwidth and computational power. These

volunteer-run nodes accommodate millions of users each

day [15]. Each user’s Tor client selects a path (called a

circuit) through the Tor network of exactly three Tor

relays in which each relay in the path knows its prede-

cessor and successor, but no other relays in the path.

In the circuit, the first hop is called a guard relay, the

second hop is called a middle relay, and the third hop is

called an exit relay. The circuit-building design is some-

times referred to as onion routing, where the client ne-

gotiates session keys with each successive hop in the

path incrementally until the final hop is reached where

traffic proceeds from the final hop to the destination

unencrypted. A client can connect to several different

destination websites through one circuit due to the fact

that each circuit can be shared by several TCP streams.

In Tor, steps are taken to ensure low-latency web

browsing. During circuit construction, there are delays

due to the use of public key cryptography and network

latency. These delays are mitigated by allowing clients

to construct circuits in advance of using them for com-

municating. The process for selecting relays attempts

to balance traffic over the available router bandwidth in

the Tor network. The bandwidth capacity of the routers

is periodically delivered to each client via the consen-

sus, a document containing information about Tor re-

lays. Load balancing is then achieved by selecting each

router in proportion to its bandwidth capacity.

To prevent various attacks such as the predecessor

attack [26, 33, 35], the selective denial of service at-

tack [4], and statistical profiling attacks, clients use a

single guard node as the first hop for every circuit she

makes. This reduces the risk that an attacker will control

the first hop on some of a user’s circuits. A new guard

is chosen only if the presently selected guard ever be-

comes unavailable, or if a period of 60 days to 9 months

is reached [9], thereby reducing the probability of rotat-

ing to a compromised guard [19].

End-to-end timing attacks are performed by adver-

saries who passively observe traffic on both ends of a Tor

stream, and thereby correlate traffic in order to identify

the client and her requested destination. The Tor design

is not resilient to end-to-end timing attacks, nor does

it claim to be. An attacker passively watching traffic

patterns on both ends of a Tor circuit will be able to

deanonymize the user with high probability [10].

2.2 Network Layer Routing

The Internet can be viewed as an aggregate of Au-

tonomous Systems (ASes) that are linked together at

the network layer by high-bandwidth lines and fast

routers. Each AS is a LAN that is owned and oper-

ated by a single organization, such as a company, gov-

ernment agency, university, or Internet service provider.

Between ASes, the routing protocol on the Internet is

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 358

BGP (Border Gateway Protocol), which is fundamen-

tally a distance vector protocol. BGP routers adhere

to routing policies which include political, security, and

economic constraints. For example, a corporate AS in

Israel might be unwilling to forward transit traffic orig-

inating from an AS in Iran. On the other hand, the

same AS in Israel might want to receive packets originat-

ing from other parts of the world which transit through

ASes in Iran. The routing policies at each BGP router

may differ; however, each BGP router keeps track of the

exact path used to a particular destination, and it tells

all neighbors the exact path it used to reach that par-

ticular destination. When a BGP router needs to reach

a destination, it asks all neighbors what path they took

and selects the best path based on its routing policies.

2.3 AS-Level Path Inference

Inferring AS-level paths from arbitrary source and desti-

nation pairs across the Internet is essential in analyzing

a path for AS-level adversaries. A popular method for

inferring AS-level paths is to perform a traceroute from

the source to the destination. However, reliably compil-

ing and distributing a complete database of traceroute

data between all clients, Tor routers, and destinations

to all users would be prohibitively expensive. We require

a different approach.

2.3.1 Qiu and Gao Path Inference

ASes form business relationships with each other based

on a variety of political, security, and economic con-

straints. A model introduced by Gao[13] abstracts these

relationships into three types: customer-to-provider,

provider-to-customer, and peer-to-peer. A customer al-

ways provides monetary transfer to the provider in ex-

change for the provider providing bandwidth to the

customer. In peer-to-peer relationships, the two ASes

have agreed to exchange traffic between each other on a

quid-pro-quo basis, allowing monetary savings on tran-

sit costs between them [7]. We can imagine the ASes

organized in graph theoretic terms as a forest of trees,

with customers as leaves at the bottom and higher-level

providers as root nodes at the top. Peer-to-peer rela-

tionships are extra edges that link the branches in the

tree and can link different trees, particularly between

root nodes.

Mao et al. introduce a method to infer AS-level

paths by using this model of relationships [22]. In this

method, a path is considered valid if, for every AS pro-

viding transit, there is a payee that is the neighbor of the

transit provider. An invalid path is one in which there

is at least one transit provider not paid by a neighbor in

the path [7]. Valid paths are denoted as possessing the

valley-free property: considering the tree-based graph

structure of inter-AS relationships, there should be no

path that goes down towards the customer leaves and

then goes back up towards the root nodes.

Qiu and Gao[27] proposed an improvement on AS-

level path inference by exploiting known paths that ap-

pear in BGP routing tables and inferring AS paths based

on this information. Their method is also extended to

infer a set of potential paths between a given source

and a given destination. They show that their algo-

rithm achieves an average accuracy of 60% for exactly

matching the entire path and 80% for matching the path

length. Additionally, they offer an AS path inference ser-

vice called Swordqiu where users are able to access the

most up-to-date inference results[3].

2.4 Related Work

2.4.1 Studies of the Threat

The vulnerability of Tor streams due to the threat of

AS-level adversaries has been evaluated by several re-

searchers. In Table 1, we summarize the findings of prior

works that used AS-path inference to determine the per-

centage of vulnerable streams in Tor.

In the Internet, traffic may be routed asymmetri-

cally, such that the AS path from the client to the server

(the forward path) is different than that for return traf-

fic from the server back to the client (the reverse path).

Most works assume that the attacker should either see

forward traffic from the client to the guard together with

forward traffic from the exit to the destination (Forward

in Table 1), or he should see reverse traffic from the

guard to the client together with reverse traffic from the

destination to the exit (Reverse in Table 1). This makes

traffic analysis easier so as to link the two ends of the

stream. A third case, based on the same assumption, is

that the attacker could succeed when seeing either the

Forward case or the Reverse case (F/R in Table 1).

More recently, however, it has been shown that the

attacker can also succeed when seeing forward traffic

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 359

Author Forward Reverse F/R Asym 1 Guard

Feamster and Dingledine [12] 17.7% 16.1% NA NA No

Edmond and Syverson [11] 10.9% 11.1% 17.8% NA No

Wacek et al. [32] NA NA 27.4% NA No

Juen [20] 7.1% 7.2% 11.2% NA No

Starov et al. [28] NA NA NA 37.0% Yes

Juen et al. [21] 11.6% 12.1% 21.6% NA No

This Work 17.2% 17.9% NA 34.4% Yes

Table 1. Comparison of results on the rates of vulnerable streams. Traffic can be observed in the Forward direction, the Reverse

direction, either direction but the same on both ends (F/R), and either direction including asymmetrically (Asym).

from the client to the guard and reverse traffic from the

destination to the exit, or vice versa [29]. We call this

the asymmetric case (Asym in Table 1), and it covers

the broadest possible set of observations.

According to most results, 11% to 28% of forward or

reverse paths of Tor streams were vulnerable. According

to Starov et al., 37% of asymmetric paths were vulner-

able. Some reasons for the high variance in past results

are due to the variations in Tor network sizes, AS-path

inference techniques, and adversary models. We discuss

adversary models in section 2.4.1.

Somewhat differently from these works, Sun et al.

present a new attack suite called Raptor that can be

launched by ASes to compromise Tor users [29]. They

introduce an asymmetric traffic analysis attack that al-

lows an adversary to deanonymize users if the adversary

is able to observe any direction of the traffic at both

ends of the Tor path. Additionally, via BGP intercep-

tion they demonstrate a correlation attack on the live

Tor Network that takes advantage of asymmetric rout-

ing on the Internet.

Similar to several prior works [11, 20, 21], we use

Qiu and Gao’s method for AS-level path inference [27].

Comparably to the recent work of Starov et al., we as-

sume that adversaries can perform asymmetric traffic

analysis attacks to deanonymize users. Note that for all

entries in Table 1, apart from Starov et al. and This

Work, Tor was not configured to use the recently de-

ployed policy of using a single entry guard.

2.4.2 Defenses

Edman and Syverson proposed and evaluated an AS-

aware path selection algorithm in which computational

overhead is avoided on the client side by using a snap-

shot of the Internet AS-topology [11]. Akhoondi et al.

proposed a Tor client called LASTor that minimizes la-

tency in paths by considering geographic locations of

relays [1]. LASTor is designed to avoid paths in which

an AS can observe both sides. Juen et al. proposed

an AS/IX-aware algorithm that reduces Tor vulnera-

ble streams to 5.3%-11% [20]. Starov et al. presented an

AS-aware Tor client called Astoria which reduces the

number of vulnerable streams to under 5.1% [28].

Among these defenses, one common disadvantage

is that the significant performance benefit from pre-

constructing circuits is diminished due to the difficulty

in preemptively constructing safe circuits, particularly

ones that are fully ready to be used, and due to the cost

of computing and checking AS-level paths on the client

side. If no available circuits are safe, new ones should

be constructed, substantially increasing the delay be-

fore sending any requests to the server.

2.5 AS-Level Adversary Model

Due to the asymmetric nature of Internet routing, the

AS path from source to destination can be different from

the AS path from destination to source. In our model, we

assume that AS-level adversaries can exploit the asym-

metric nature of Internet routing to compromise users

by observing any direction of traffic at both ends of the

Tor path [28, 29]. We assume that the adversary may

control the routers in any AS in the Internet. Since we

do not know which ASes might be compromised, we

simply say that when an AS appears on both ends of

a path between the client and the destination, the AS

is well-positioned and the path is vulnerable. Minimiz-

ing the chance of a path vulnerability, so defined, also

reduces the risk for a user that any single compromised

AS could link her with her destinations.

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 360

We now define this model more precisely. The for-

ward path is one in which data in the TCP connection

travels from client to guard and from exit to destination.

The set of ASes from the client (c) to guard (g) that are

traversed on the forward path are denoted as Pc→g. The

set of ASes from the exit (x) to destination (d) that are

traversed on the forward path are denoted as Px→d. If

Pc→g ∩ Px→d 6= ∅, then we say that the forward path is

vulnerable. Of course, the ASes in this intersection may

not be malicious or compromised by an adversary. As

we do not know, however, which ASes are malicious, we

assume that any AS can qualify.

Similarly, the reverse path is one in which data in

the TCP connection travels from destination to exit and

from guard to client. The set of ASes in between guard

to client that are traversed on the reverse path are de-

noted as Pg→c. The set of ASes in between destination

to exit that are traversed on the reverse path are de-

noted as Pd→x. If Pg→c ∩ Pd→x 6= ∅, then the reverse

path is vulnerable.

The combined asymmetric path from client to guard

is denoted as Pc↔g = Pc→g ∪ Pg→c. The asymmetric

path from exit to destination is denoted as Px↔d =

Px→d ∪ Pd→x.

The asymmetric path from the client to her desti-

nation is vulnerable if Pc↔g ∩ Px↔d 6= ∅.

3 AS-Level Adversaries

In this section, we simulate the Tor network by generat-

ing Tor streams using TorPS and analyze those streams

with Qiu and Gao AS-level path inference. The simu-

lation will serve as a benchmark for analyzing our AS-

aware approach (Section 4).

3.1 Experimental setup

TorPS [31] – a Tor path selection simulator – uses histor-

ical data to recreate network conditions that Tor users

experienced in the real world [19]. Under these con-

ditions, circuits are created according to past network

state, and streams are attached to these circuits accord-

ing to user behavior. Path selection in TorPS is based

on the code in Tor version 0.2.3.25.

In our experiment, we configure TorPS to use a sin-

gle guard and allow a new guard to be selected only

CC Mean daily users CC Mean daily users

US 16.47% ES 3.86%

DE 9.32% BR 3.71%

RU 7.21% IT 3.59%

FR 6.27% PL 2.47%

GB 4.42% JP 2.36%

Table 2. Top 10 countries by directly connecting users [15]

if the first guard is unavailable. We use the 176 top

Alexa [2] destination websites from 108 ASes that range

in genre from news, social media, search engines, blogs,

e-commerce, banking, classifieds, etc.

We test six distinct user models: 1) 5-destination,

2) 10-destination, 3) all-destinations, 4) 5.1-distinct, 5)

5.2-distinct, and 6) 5.3-distinct. The 5-destination user

model is one in which each client selects five destina-

tions uniformly at random from the set of 176 sites at

the start of the simulation. During the simulation, the

client then requests destinations uniformly at random

from this pre-selected set. Similarly, the 10-destination

user model specifies that each client selects from among

10 pre-selected destinations for each connection. The

all-destination user model is one in which all clients uni-

formly visit all 176 destinations.

We have three user models, 5.1-distinct, 5.2-distinct,

and 5.3-distinct, in which all users visit the same five

destinations. The goal of using these models is to show

the extent to which our findings depend on the user’s

choice of destinations. The five destinations for each

model were pre-selected uniformly at random from the

full set of destinations.

The client model is based on the top 10 countries by

directly connecting users according to Tor Metrics [15].

Table 2 shows this weighted distribution of clients ac-

cording to country. We simulate up to 10 clients from

distinct ASes for each country totaling 92 clients from

92 distinct ASes. Client ASes are chosen partly from the

list proposed by Edmond and Syverson [11], partly from

the list proposed by Juen [20], and partly from CAIDA

Top Ranking ASes [5].

We parsed a Tor Consensus from December 2014

and found that there were 353 ASes for all guard nodes

and 454 ASes for all exit nodes. In our experiments, we

simulate 49% of the Tor guard nodes from 329 ASes, and

43% of the Tor exit nodes from 380 ASes. Thus, 93% of

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology







DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 363

We find that Qiu and Gao inference has a mean

accuracy of 90% taken over the eight Suspect ASes. We

note that the TPR is quite low in some cases while the

accuracy is high. This is due to the fact that Negative

cases occurred 100 to 1000 times more frequently than

Positive cases, causing the P/N ratio to be small.

We conclude that, with this accuracy, Qiu and Gao

inference is suitable for predicting and mitigating AS-

level adversaries in our simulation. On the other hand,

our approach is designed in such a way that traceroute

measurements or Qiu and Gao inference, or a combina-

tion of both, can be used in deployment.

4 AS-Awareness

We now introduce DeNASA, a new AS-aware approach

to Tor path selection that is destination-naive, in that

it allows clients to pre-build circuits that are fully ready

to be used without knowing the requested destination

in advance.

First, let us define Tsus, probability table that is

input to the algorithm. Tsus is a table with rows equal

to the number of Exit ASes and columns equal to the

number of Suspect ASes. An Exit AS is an AS that a

Tor exit relay resides in – denoted as ASex. In Tsus, each

value (PRi,j) represents the probability that a Suspect

AS ASsus
i will be traversed between an Exit AS ASex

j

and possible destinations. Tsus values are obtained by

inferring the AS-level path from all Exit ASes to all

Destinations in our simulation.

In particular, (PRi,j) is calculated as follows: Let

ASsus
i denote the ith Suspect AS, ASex

j denote the jth

Exit AS, Destk denote the kth Destination, and let q be

the total number of Destinations. Then PRi,j is equal

to the total number of paths where ASsus
i appears from

ASex
j to Destk for all 1 ≤ k ≤ q, divided by the total

number of paths from ASex
j to Destk for all 1 ≤ k ≤ q.

In a realistic deployment, it would not be practical

to perform traceroute measurements from Internet des-

tinations such as popular Web servers to Tor exit relays.

As such, we obtain Tsus from forward paths from exit to

destination, and not reverse paths from destination to

exit. This means not having access to reverse path mea-

surements if traceroute is used for AS path inference.

Instead, we obtain Tsus from Qiu and Gao inference or

by performing traceroute measurements from Tor exit

relays to destinations across the Internet.

Data: Pc↔g

Data: Suspect AS list

Data: Tsus

Data: τ (a tunable parameter)

flag = 1;

select guard from Guard List;

while flag do

select exit via Tor algorithm;

foreach ASsus in Pc↔g do

if PRASsus,ASex < τ then

flag = 0;

else

flag = 1;

break;

end

end

end

Algorithm 1: e-select, AS-aware path selection.

4.1 AS-Aware Path Selection Algorithm

Two methods make up the DeNASA path selection al-

gorithm. The first method is called e-select (see Algo-

rithm 1), and it determines how a client selects the exit

relay. The data inputs are pc↔g, Suspect AS list, Tsus,

and τ (a tunable threshold). First, the client selects a

guard node from the guard list. Then, via bandwidth

weighting, the client selects an exit node. For all Sus-

pect ASes that appear in the path from client to guard,

if the value PRAS,Exit is less than τ , the chosen exit is

accepted. If not, the algorithm selects and tests more

exits until a suitable one is found. τ can be tuned from

0.0 (maximum security) to 1.0 (maximum flexibility).

The second method, called g-select, determines how

a client adds guards to the guard list. In this method,

a client first selects a potential guard via the Tor guard

selection algorithm and then ensures that there is not

a Suspect AS in the asymmetric path from client to

guard. The client cycles through all live guards until

one is found that meets this constraint. If there are no

guards that meet the constraint, the client will select a

guard as per the standard Tor guard selection algorithm.

For g-select, the Suspect AS list length is reduced to

len=2 (3356 and 1299) in order to not introduce a guard

placement attack (discussed in section 4.4).

Methods 1 and 2 can be switched on or off indepen-

dently of each other. When both methods are switched

on, we call the algorithm g&e-select.

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology













DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 369

network size was significantly smaller for the Shadow

simulations, and 2) the number of streams generated

from the Shadow simulations were significantly less.

5.2 Performance Results

In Figures 11a and 11d, we plot live Tor performance for

fixed file size downloads of 50 Kib from historical Tor

network data from Tor Metrics [15] during the period of

December 2014. The live performance can be compared

to Shadow perf clients to validate that client perfor-

mance in our model was statistically similar to that of

live Tor. We tuned the client-to-relay ratio of our simu-

lation so that TTLB would be very similar for Shadow

and live Tor, as we see in Fig. 11d. For these settings,

however, TTFB is slower in live Tor than our Shadow

simulations (Fig. 11a).

Figures 11b and 11e show TTFB and TTLB val-

ues for g-select, e-select:0.1, e-select:0.2, and e-select:0.3

compared to vanilla Tor. On the most secure setting for

e-select (τ = 0.1), 80% of downloads were from approx-

imately 0.0s to 0.5s slower in TTFB and 0.0s to 2.5s

slower in TTLB compared to vanilla Tor. As τ is in-

creased to 0.3, the difference in TTFB and TTLB for

e-select compared to vanilla Tor approach zero. These

results indicate that exit nodes are being slightly over-

loaded when e-select constraints are set high (τ = 0.1).

However, as the e-select constraints are relaxed, the exit

node selection becomes diverse enough such that no sig-

nificant congestion is added to the Network.

The TTFB and TTLB values for g-select were sim-

ilar to vanilla Tor. These results and results from Fig-

ure 7 indicate that guard nodes are not being overloaded

when g-select is in use.

Figures 11c and 11f show TTFB and TTLB val-

ues for g&e-select:0.1, g&e-select:0.2, and g&e-select:0.3

compared to vanilla Tor. The TTFB and TTLB perfor-

mance for each g&e-select method was very similar to

vanilla Tor. When g-select is combined with e-select, the

exit node selection policy is relaxed due to the guaran-

tee that AS3356 and AS1299 are not in the path from

client to guard. This allows clients to select exit nodes

that would otherwise not satisfy the e-select constraints.

This leads to some exit nodes being not as loaded when

g&e-select is in use compared to e-select, and thus g&e-

select:0.1 outperforms e-select:0.1 in TTFB and TTLB.

6 Discussion and Future Work

In this section we discuss some deployment ideas for

g-select and e-select, and caveats within the DeNASA

approach. We additionally suggest ideas for future work.

6.1 G-select

The g-select method requires less modification to Tor

compared to e-select. In this method, the client would

perform AS-path inference once every two to nine

months (when a client chooses a new guard) or when the

current guard becomes unavailable. In our current ver-

sion, the client would choose a guard in which AS3356

and AS1299 are not exist in the path from the client to

the guard. Deploying g-select does not require any mod-

ification to Tor relays or directory authorities because

all the work is done on the client side.

6.1.1 Mobile clients

The frequency that the g-select method may be called

from the client side will increase if the client is mo-

bile. A mobile client will be connecting from different

ASes over time and thus must re-evaluate the path be-

tween client to guard more often. Moreover, the g-select

method may cause mobile clients to add more guards

to their guard list compared to stationary clients. This

may cause mobile clients to be more vulnerable to relay-

level adversaries who control a percentage of deployed

guard nodes [19].

On the other hand, if a client only makes small

movements to adjacent ASes within their geographic

area, the AS path from client to guard may not change

enough to cause the client to select a new guard. How

client mobility affects guard selection when using the

g-select method is an open question for future work.

Since relay-level attacks are effective [19] and prob-

ably cheaper than AS-level attacks to deploy, we would

suggest reducing the chance of success for a relay-level

attacker by having g-select not trigger a new guard

selection when a mobile client connects from different

ASes until the effects of client mobility have been fur-

ther studied in future work. Furthermore, future work

would include an analysis showing DeNASA’s resilience

against relay-level adversaries in general.

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 370

6.1.2 Constraints

In g-select, we needed to pick a trade-off in the length of

the Suspect AS list, where longer lists prevented more

AS-level attacks but led to increased vulnerability to

guard placement attacks. The trade-off is not the same

for every client, however, as some clients have more

available guards even with a longer list. It might be

possible for clients to measure their own susceptibility

to guard placement attacks and then choose an appro-

priate setting for the list length. This would allow less

restricted clients to have greater protection against AS-

level adversaries, with minimal additional risk of guard

placement attacks, while more restricted clients could

use a list of length zero if needed.

For g-select, the Suspect AS list combination

(AS3356 and AS1299) was selected based on the results

shown in Figure 7. The data shown accounts for eight

out of 28 possible combinations of the Suspect AS list,

for len = 2. It might be possible to tune the Suspect

AS list combinations to allow restricted clients to have

greater protection against the guard placement attack.

The g-select method introduces constraints which

determine how clients select guards. The constraints

change based on client’s location. The constraints may

also vary if g-select is modified such that random com-

binations of the Suspect AS list are used for each client.

These characteristics, or other modifications to g-select,

may cause g-select to naturally induce Tor guard nodes

into non-disjoint guard-sets [9, 14]. Future work would

include an analysis of how g-select may induce guard-

sets and what the implications may be for anonymity.

6.2 E-select

We now discuss deployment of the e-select method.

The client side requirements for e-select are: the AS

path from client to guard (discussed in Section 6.1),

the Suspect AS list (found in Section 3 to be the eight

highest ranking Tier 1 ASes, but subject to change over

time), and Tsus. Thus, the deployment challenge in the

e-select method is in obtaining Tsus, and obtaining the

Suspect AS list. For Tsus we propose two methods. The

first method is designed around using Qiu and Gao AS-

path inference, and the second is designed around using

traceroute measurements for inferring AS-paths.

The Qiu and Gao deployment requires the directory

authorities to perform AS-path inference from all exit

relays to a number of AS destinations. The number of

AS destinations will be determined by how often Tsus

is recalculated. For example, if the directory authorities

are configured to deliver a new Tsus to the clients every

week, then the number of AS destinations will be deter-

mined by how many AS-paths that can be inferred in

this amount of time.

With a larger destination set size, Tsus values should

be more accurate. Though it is not feasible to infer AS-

paths for all possible AS destinations, our results show

that AS-awareness can be achieved for a larger set of

AS destinations than what was originally inferred for

calculating Tsus. In Section 4, we calculated Tsus for a

subset of 55 AS destinations and tested AS-awareness

for the full set of 108 AS destinations. This simulated

clients requesting destinations that are both inside and

outside the training set. On the other hand, traceroute

measurements can be performed from all exit nodes to

a number of AS destinations. The results can be aggre-

gated at the directory authorities where Tsus would be

calculated and delivered to all clients. In this method,

only forward paths from exit to destination are realisti-

cally attainable. The accuracy may be enhanced if Qiu

and Gao inference is used to acquire the reverse paths

from destination to exit in combination with traceroute

measured paths. We calculated Tsus from forward paths

only in order to simulate the constraint of not having

access to reverse path measurements.

One disadvantage of using traceroute measurements

from exit relays is that compromised exit relays may

spoof AS paths if traceroute measurements are used

from exit to destination to obtain Tsus. In particular,

the compromised exit could remove any suspect ASes

and thereby increase its probability of being selected by

Tor clients using e-select. Assuring reliable traceroutes

initiated from a potentially unreliable host is a challeng-

ing problem to be sure.

6.3 Suspect AS List

The Suspect AS list is expected to change as the un-

derlying AS topology of the Internet changes and as the

Tor Network scales. As such, we suggest that the Sus-

pect AS list should be computed and updated by the

directory authorities and sent to clients along with the

Tsus. The Suspect AS list can be computed by running

a simulation at the directory authorities similar to the

TorPS simulation in Section 3.

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 371

6.4 Destination Set

As discussed in Section 3.1, 176 destinations were used

from the top websites according to Alexa [2] that range

in genre from news, social media, search engines, blogs,

e-commerce, banking, classifieds, and more.

Originally, 200 destinations were selected. For 24

destinations, however, the AS paths from some exits to

those destinations, or from those destinations to some

exits were not resolvable with the AS path inference

method. For this reason, we removed these 24 destina-

tions from the destination set.

In a realistic deployment of DeNASA, destinations

could be chosen based on actual AS destinations that

are requested by Tor users.

6.5 Improvements

The DeNASA method could be enhanced to evade IX

adversaries. In this deployment, the set of Suspect ASes

would additionally include sets of peering ASes that

peer at Internet Exchange Points. Tsus would addition-

ally include probabilities that a TCP connection would

traverse a set of peering ASes from an exit AS. The

sets of peering ASes would additionally be considered

via Tsus during circuit creation for e-select, and during

guard selection for g-select. The effects of an enhanced

DeNASA method to evade IX adversaries is left for fu-

ture work.

7 Conclusions

Our work is in response to the call for more sophisti-

cated path selection algorithms in anonymous commu-

nications which resist the prevalent threat of AS-level

adversaries. As such, we have demonstrated the effec-

tiveness of our destination-naive AS-aware scheme in

terms of anonymity and network performance. First, we

identified the most probable ASes to be traversed by

Tor streams. We call this set of ASes the Suspect AS

set and found that it consists of eight highest ranking

Tier 1 ASes. Then, we validated the accuracy of Qiu and

Gao AS-level path inference on identifying the individ-

ual ASes from the eight members of our Suspect AS set.

We developed an AS-aware algorithm that reduces Tor

stream vulnerability by 74% simply by avoiding Suspect

ASes. We demonstrate that DeNASA has performance

similar to Tor. Due to the destination-naive property,

time to first byte is close to Tor’s, and due to leveraging

Tor’s bandwidth-weighted relay selection, time to last

byte is also similar to Tor’s.

8 Acknowledgments

We would like to thank the reviewers for providing criti-

cal comments throughout several revisions of this paper.

In particular, we thank our shepherds Roger Dingledine

and Paul Syverson, as well as the other anonymous re-

viewers for introducing the guard placement attack and

providing insight that greatly helped improve the pa-

per. This work was supported in part by NSF awards

number CNS-1423163 and CNS-0954133.

References

[1] Masoud Akhoondi, Chu Yu, and Harsha V Madhyastha.

LASTor: A low-latency AS-aware Tor client. In IEEE S&P,

2012.

[2] Alexa.com. Alexa top sites., June 2015. http://www.alexa.

com/topsites.

[3] bgpVista. Swordqiu, March 2015. http://www.bgpvista.

com/asinfer.php.

[4] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa

Tabriz. Denial of service or denial of security? In CCS, 2007.

[5] CAIDA. CAIDA AS ranking, June 2015. http://as-rank.

caida.org/.

[6] CAIDA. The CAIDA UCSD IPv4 routed /24 topology

dataset, June 2015. http://www.caida.org/data/active/

ipv4 routed 24 topology dataset.xml.

[7] CAIDA. The CAIDA AS relationships, January 2016. http:

//www.caida.org/data/as-relationships/.

[8] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Pre-

neel. Towards measuring anonymity. In PETS, 2003.

[9] Roger Dingledine, Nicholas Hopper, George Kadianakis, and

Nick Mathewson. One fast guard for life (or 9 months). In

HotPETs, 2014.

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:

The second-generation onion router. In USENIX Security,

2004.

[11] Matthew Edman and Paul Syverson. AS-awareness in Tor

path selection. In CCS, 2009.

[12] Nick Feamster and Roger Dingledine. Location diversity in

anonymity networks. In WPES, 2004.

[13] Lixin Gao. On inferring autonomous system relationships in

the Internet. ACM/IEEE Transactions on Networks (TON),

9(6), 2001.

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology



DeNASA: Destination-Naive AS-Awareness in Anonymous Communications 372

[14] Jamie Hayes and George Danezis. Guard sets for onion

routing. In PETS, 2015.

[15] Tor Project Inc. Tor Metrics, June 2015. https://metrics.

torproject.org.

[16] Rob Jansen, Kevin S Bauer, Nicholas Hopper, and Roger

Dingledine. Methodically modeling the Tor network. In

CSET, 2012.

[17] Rob Jansen, John Geddes, Chris Wacek, Micah Sherr, and

Paul Syverson. Never been KIST: Tor’s congestion man-

agement blossoms with kernel-informed socket transport. In

USENIX Security, 2014.

[18] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in

a box for accurate and efficient experimentation. In NDSS,

2012.

[19] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and

Paul Syverson. Users get routed: Traffic correlation on Tor

by realistic adversaries. In CCS, 2013.

[20] Joshua Juen. Protecting anonymity in the presence of au-

tonomous system and Internet exchange level adversaries.

Master’s thesis, University of Illinois, http://hdl.handle.net/

2142/34363, 2012.

[21] Joshua Juen, Aaron Johnson, Anupam Das, Nikita Borisov,

and Matthew Caesar. Defending Tor from network adver-

saries: A case study of network path prediction. In PETS,

2015.

[22] Z Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On AS-

level path inference. In SIGMETRICS, 2005.

[23] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and

Randy H Katz. Towards an accurate AS-level traceroute

tool. In SIGCOMM, 2003.

[24] Steven J Murdoch and George Danezis. Low-cost traffic

analysis of Tor. In IEEE S&P, 2005.

[25] Steven J Murdoch and Piotr Zieliński. Sampled traffic analy-

sis by Internet-exchange-level adversaries. In PETS, 2007.

[26] Lasse Overlier and Paul Syverson. Locating hidden servers.

In IEEE S&P, 2006.

[27] Jian Qiu and Lixin Gao. Cam04-4: AS path inference by

exploiting known AS paths. In GLOBECOM, 2006.

[28] Oleksii Starov, Rishab Nithyanand, Adva Zair, Phillipa Gill,

and Michael Schapira. Measuring and mitigating AS-level

adversaries against Tor. In NDSS, 2016.

[29] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li,

Jennifer Rexford, Mung Chiang, and Prateek Mittal. RAP-

TOR: Routing attacks on privacy in Tor. In USENIX Secu-

rity, 2015.

[30] Paul Syverson, Gene Tsudik, Michael Reed, and Carl

Landwehr. Towards an analysis of onion routing security.

In Designing Privacy Enhancing Technologies, 2001.

[31] TorPS. TorPS: The Tor path simulator. http://torps.github.

io.

[32] Chris Wacek, Henry Tan, Kevin S Bauer, and Micah Sherr.

An empirical evaluation of relay selection in Tor. In NDSS,

2013.

[33] Matthew Wright, Micah Adler, Brian N Levine, and Clay

Shields. Defending anonymous communications against

passive logging attacks. In IEEE S&P, 2003.

[34] Matthew K Wright, Micah Adler, Brian Neil Levine, and

Clay Shields. The predecessor attack: An analysis of a threat

to anonymous communications systems. TISSEC, 7(4),

2004.

[35] Matthew K Wright, Micah Adler, Brian Neil Levine, and

Clay Shields. Passive-logging attacks against anonymous

communications systems. TISSEC, 11(2), 2008.

 - 10.1515/popets-2016-0044

Downloaded from PubFactory at 08/22/2016 10:17:15PM

via Rochester Institute of Technology


